サイコロを9個ふるという時点で爆笑してしまったこのゲーム。サイコロを使ってるんで、確率で攻めるにはもってこいです。
簡単にポイントを整理すると、大切なのはサイコロをふって1から6の目が最低1つずつ全て出揃うこと。そしてサイコロは頑張れば3つまで増やせること。じゃあ頑張って増やしただけのメリットがあるのかどうか。これ重要。

まずは単純な計算から。サイコロを6個ふって、1から6の目が出揃う確率は、
分母が6^6=46656
分子が6!=720
よって求める確率は
720/46656=1.54%

じゃあ、サイコロが7個になったら。
分母が6^7=279936
分子が??????A(Aは何でもいい)の順列。
A=?のとき、???????の順列で、場合の数は
7!÷2!=2520通り
A=?〜?まであるので、
2520×6=15120
よって求める確率は
15120/279936=5.40%

まてまて。サイコロは互いに独立してるから、同じものを含む順列で計算したらだめな気がする。と思ったけどやっぱりこれであってる気がする。

じゃあサイコロが8個になったら。
分母が6^8=2239488
分子が??????AAの順列なんで、以下場合分け。
?-AAが同じ目
たとえばAAが??
????????の順列なんで、
8!÷3!=6720が6通りあるんで×6=40320
?-AAが違う目
たとえばAAが??
????????の順列なんで、
8!÷2!÷2!=10080、それが15通りあるんで×15=151200
?+?=191520
よって求める確率は
191520/2239488=8.55%

サイコロ9個だとAAAを3つに場合分けって・・・。
めんどくさいんでとりあえずここまで。

コメント

お気に入り日記の更新

最新のコメント

この日記について

日記内を検索